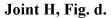


EXAMPLE 4.3.3

Using the method of joints, indicate all the members of the truss shown in **Fig.** *a* that have zero force.

Solution

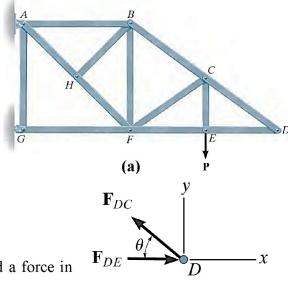

Joint D, Fig. b.

$$\begin{split} &+ \uparrow \sum F_y = 0; \ F_{DC} \sin \theta = 0 \quad F_{DC} = 0 \\ &+ \rightarrow \sum F_x = 0; \quad F_{DE} + 0 = 0 \quad F_{DE} = 0 \end{split}$$

Joint E, Fig. .

$$+\leftarrow\sum F_x=0; \quad F_{EF}=0$$

Note that $F_{EC} = P$ and an analysis of joint C would yield a force in member CF.


$$+ \sum F_y = 0; F_{HB} = 0$$

Joint G, Fig. e.

The rocker support at G can only exert an x component of force on the joint

$$+ \uparrow \sum F_y = 0; F_{GA} = 0$$

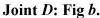
(d)

(e)

(b)

 \mathbf{F}_{EC}

EXAMPLE 4.3.4


A sign is subjected to a wind loading that exerts horizontal forces of 300 lb on joints B and C of one of the side supporting trusses. Determine the force in each member of the truss and state if the members are in tension or compression.

Solution

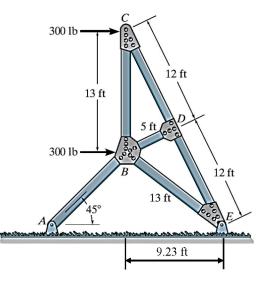
Joint C: Fig a.

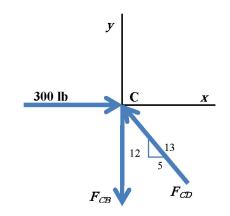
$$+ \rightarrow \sum F_x = 0; \quad 300 - F_{CD} \left(\frac{5}{13} \right) = 0 \implies F_{CD} = 780 \text{ lb (C)}$$

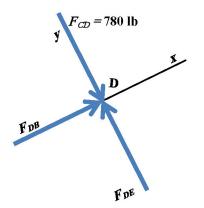
$$+\uparrow \sum F_y = 0; \quad 780 \left(\frac{12}{13}\right) - F_{CB} = 0 \implies F_{CB} = 720 \text{ lb (T)}^{\text{T}}$$

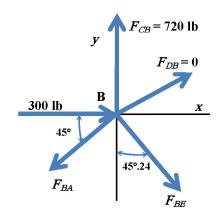
$$+\sum F_{x}=0; F_{DB}=0$$

$$+\sum F_y = 0; \quad F_{DE} - 780 = 0 \implies F_{DE} = 780 \text{ lb (C)}$$


Joint B: Fig b.


$$+ \rightarrow \sum F_x = 0$$
; $300 + F_{BE} \sin 45.24^{\circ} - F_{BA} \cos 45^{\circ} = 0$


$$+ \uparrow \sum F_{v} = 0; \quad 720 - F_{BE} \cos 45.24^{\circ} - F_{BA} \sin 45^{\circ} = 0$$


Solving

$$F_{BE} = 296.99 \text{ lb} = 297 \text{ lb (T)}$$
 $F_{BA} = 722.49 \text{ lb (T)}$

ANALYSIS OF STATICALLY DETERMINATE TRUSSES

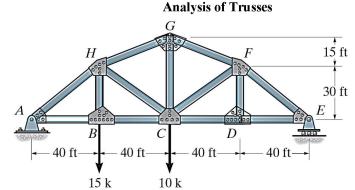
EXAMPLE 4.3.5

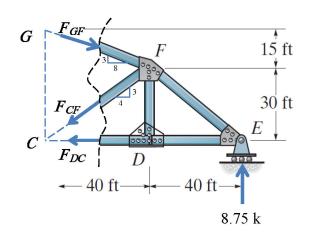
Determine the force in members GF, FC, and CD of the bridge truss. State if the members are in tension of compression. Assume all members are pin connected.

Solution

$$+ \circlearrowleft \sum M_A = 0;$$
 $-15(40) - 10(80) + R_E(160) = 0$
 $\Rightarrow R_E = 8.75 \text{ } k$

$$+ \circlearrowleft \sum M_F = 0; \quad -F_{DC}(30) + 8.75(40) = 0$$

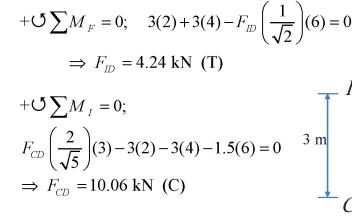

$$\Rightarrow F_{DC} = 11.7 \text{ k (T)}$$

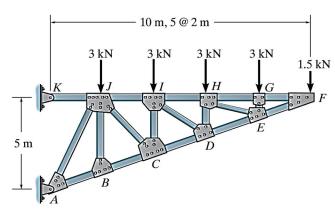

$$+ \circlearrowleft \sum M_C = 0; \quad -F_{FG}\left(\frac{8}{\sqrt{73}}\right)(45) + 8.75(80) = 0$$

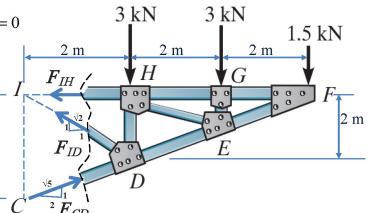
$$\Rightarrow F_{FG} = 16.6 \text{ k (C)}$$

$$+ \uparrow \sum F_y = 0; \quad 8.75 - 16.6\left(\frac{3}{\sqrt{73}}\right) - F_{FC}\left(\frac{3}{5}\right) = 0$$

$$\Rightarrow F_{FC} = 4.86 \text{ k (T)}$$

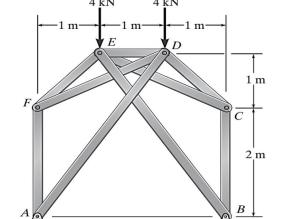

EXAMPLE 4.3.6


Determine the force in members *IH*, *ID*, and *CD* of the truss. State if the members are in tension or compression. Assume all members are pin connected.


Solution

Referring to the FBD of the right segment of the truss sectioned through, Fig.,

+U
$$\sum M_D = 0$$
; $F_{IH}(2) - 3(2) - 1.5(4) = 0$
 $\Rightarrow F_{IH} = 6 \text{ kN (T)}$



EXAMPLE 4.3.7

Determine the force in each member and state if the members are in tension or compression.

Solution

Reactions

$$\sum M_B = 0, \implies A_y = 4.00 \text{ kN}$$

$$\sum F_y = 0, \implies B_y = 4.00 \text{ kN}$$

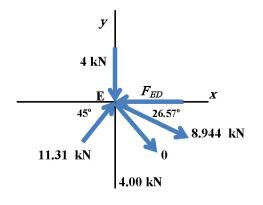
$$\sum F_x = 0, \implies A_x = 0$$

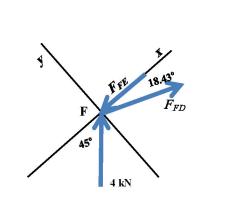
Joint A:

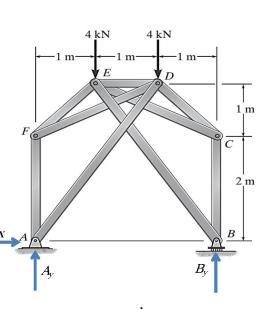
$$+ \rightarrow \sum F_x = 0; \quad F_{AD} = 0$$

 $+ \uparrow \sum F_y = 0; \quad 4.00 - F_{AF} = 0; \quad F_{AF} = 4.00 \text{ kN (C)}$

Joint F:


$$+\sum F_y = 0$$
; 4.00 sin 45° - F_{FD} sin 18.43° = 0
 $F_{FD} = 8.944 \text{ kN} = 8.94 \text{ kN (T)}$
 $+\sum F_x = 0$; 4.00 cos 45° - 8.94 cos 18.43° - $F_{FE} = 0$
 $F_{FE} = 11.313 \text{ kN} = 8.94 \text{ kN (C)}$


Due to symmetrical loading and geometry


$$F_{BC} = 4.00 \text{ kN (C)}, \quad F_{CE} = 8.94 \text{ kN (T)}$$

 $F_{BE} = 0, \quad F_{CD} = 11.3 \text{ kN (C)}$

Joint E:

$$+ \rightarrow \sum F_x = 0;$$
 $-F_{ED} + 8.944 \cos 26.56^{\circ} + 11.31 \cos 45^{\circ} = 0$ $F_{ED} = 16.0 \text{ kN (C)}$

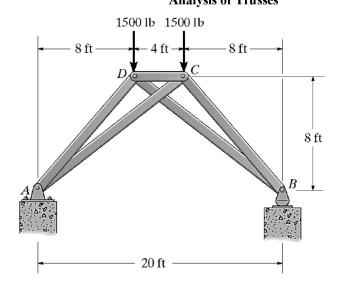
 F_{AF}

56.31°

4.00 kN

EXAMPLE 4.3.8

Determine the force in each member and state if the members are in tension or compression.


Solution

Reactions

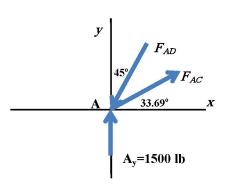
$$\sum M_B = 0, \implies A_y = 1500 \text{ Ib}$$

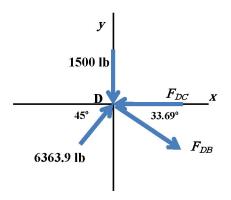
$$\sum F_y = 0, \implies B_y = 1500 \text{ Ib}$$

$$\sum F_x = 0, \implies A_x = 0$$

Joint A:

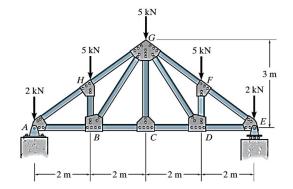
$$\begin{split} + \to \sum F_x &= 0; \quad F_{AC} \cos 33.69^{\circ} - F_{AD} \cos 45^{\circ} = 0 \\ + \uparrow \sum F_y &= 0; \quad 1500 - F_{AD} \sin 45^{\circ} + F_{AC} \sin 33.69^{\circ} = 0; \\ F_{AC} &= 5408.3 \text{ lb} = 5.41 \text{ k (T)} \\ F_{AD} &= 6363.9 \text{ lb} = 6.36 \text{ k (C)} \end{split}$$

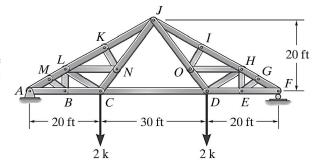

Joint D:


$$+ \uparrow \sum F_y = 0; \quad 6363.9 \sin 45^{\circ} - 1500 - F_{DB} \sin 33.69^{\circ} = 0$$

$$F_{DB} = 5408.3 \text{ lb} = 5.41 \text{ k (T)}$$

$$+ \rightarrow \sum F_x = 0; \quad 6363.9 \cos 45^{\circ} - F_{DC} - F_{DB} \sin 33.69^{\circ} = 0;$$

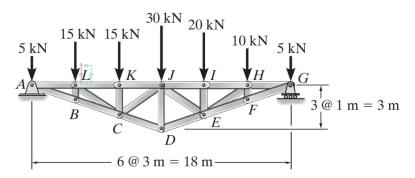

$$F_{DC} = 9000 \text{ lb} = 9.00 \text{ k (C)}$$
by symmetry,
$$F_{CB} = 6363.9 \text{ lb} = 6.36 \text{ k (C)}$$



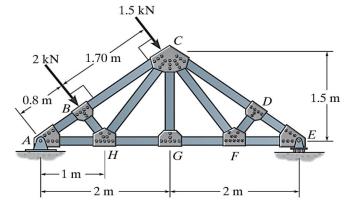
Hw.10 The Howe truss is subjected to the loading shown. Determine the forces in members **GF**, **CD**, and **GC**. State if the members are in tension or compression. Assume all members are pin connected.

Hw.11

Determine the force in members JK, JN, and CD. State if the members are in tension or compression. Identify all the zero-force members.


Hw.12

Determine the force in members GF, FC, and CD of the cantilever truss. State if the members are in tension or compression. Assume all members are pin connected.


Hw.13

Determine the forces in members *KJ*, *CD*, and *CJ* of the truss. State if the members are in tension or compression.

Hw.14

Determine the force in members GF, CF, and CD of the roof truss and indicate if the members are in tension or compression.

